CHEMICALLY REACTING FLOW

Combustion
Fuel reforming and synthesis
Hydrogen production and storage

Fuel cells and batteries

ok » b=

Reactive material synthesis



IMPACT

1. Energy Independence (national security).
2. Health Risk (pollution and toxics).

3. Economic Competitiveness.

Through:
“Well-to-Wheel”
High efficiency, low emission and fast design
“using hydrogen 1s not the answer”
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THE MULTISCALE PROBLEM

Reacting Flow Problems include highly nonlinear, strongly
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coupled physics, chemistry and transport:

. Acoustics, O(1 m).

Convection with multiphase, O(0.1 m).
Diffusion, O(0.1 mm).
Chemical reactions with soot (nano-C), O(0.001 mm).

. Radiation.

Length scales: 6 decades
Time scale: 8 decades



Bill Proscia, UTRC

Combustion Instabilities Limit Minimum Achievable NOx Emissions

* P&W DLN+ Goals:
* 15 ppm / 15 ppm NOx/CO
* RMS pressure < 1.7 psi
« FT8 and FT4000SC cycles
* Wide range of operating conditions
* 50 - 100% power
* -40 to 120 F ambient temp.
* Air bypass design
* enables emissions goals
« variable convective delay
* Instabilities inevitable

* op. condns. --> combustion delay

e air bypass --> convective delay

 Passive design solution may be possible
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Low emission burning leads to instability
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Dependence of OASPL on Air Jet
Velocity and H2
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Normalized Velocity of Air Injection at the Step
* A relatively large transverse jet velocity was necessary to reduce the pressure
fluctuations by 14 dB, penetration is important.

« H2 addition 1s to support a more stable flame, lowering pressure oscillation and
preventing blowout.



Dependence of NOx on Air Jet Velocity
and H2
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e Introduction of an air jet reduces NO levels by an order of magnitude
* Hydrogen addition under the same conditions boosts NO levels



QuickTime™ and a
MPEG-4 Video decompressor
are needed to see this picture.



